7H-benzo[c]fluorene: a major DNA adduct-forming component of coal tar

Coal tar is a complex mixture that exhibits high carcinogenic potency in lungs of animals when administered in the diet. Studies have noted that lung tumor induction does not correlate with the benzo[a]pyrene content of coal tar, suggesting that other hydrocarbons may be involved in the observed tum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carcinogenesis (New York) 2000-08, Vol.21 (8), p.1601-1609
Hauptverfasser: Koganti, Aruna, Singh, Renu, Rozett, Kimberly, Modi, Nehal, Goldstein, Lawrence S., Roy, Tim A., Zhang, Fang Jie, Harvey, Ronald G., Weyand, Eric H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coal tar is a complex mixture that exhibits high carcinogenic potency in lungs of animals when administered in the diet. Studies have noted that lung tumor induction does not correlate with the benzo[a]pyrene content of coal tar, suggesting that other hydrocarbons may be involved in the observed tumorigenicity. Our previous studies have demonstrated that a major `unknown' chemical–DNA adduct is formed in the lung of mice exposed to coal tar. We have used an in vitro rat microsomal activation system to generate the `unknown' adduct with neat coal tar and fractions of coal tar obtained by chemical fractionation and HPLC. Chemical–DNA adduct formation was evaluated by 32P-postlabeling using both multi-dimensional TLC and HPLC. GC–MS analysis of the coal tar fractions obtained from HPLC, which produced the `unknown' adduct in vitro, demonstrated that the adducting hydrocarbon had a mass of 216. A careful evaluation of candidate hydrocarbons led to the conclusion that a benzofluorene derivative may be responsible for forming the `unknown' chemical–DNA adduct. Comparative in vitro and in vivo studies on the adducting properties of all three isomers of benzofluorene indicated that 7H-benzo[c]fluorene is responsible for producing the `unknown' adduct observed in the lung of mice ingesting coal tar. Animal feeding studies also demonstrated that 7H-benzo[c]fluorene formed considerably more lung DNA adducts than 11H-benzo[a]fluorene and 11H-benzo[b]fluorene. These data indicate that the four-ring polycyclic aromatic hydrocarbon 7H-benzo[c]fluorene, a hydrocarbon not previously shown to form DNA adducts in lung, is in fact a potent lung DNA adductor and is a candidate PAH for causing lung tumors in animals treated with coal tar.
ISSN:0143-3334
1460-2180
DOI:10.1093/carcin/21.8.1601