Multi-parameter deformations of the module of symbols ofdifferential operators

The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Mathematics Research Notices 2002, Vol.2002 (16), p.847-869
Hauptverfasser: Agrebaoui, B., Ammar, F., Lecomte, P., Ovsienko, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 16
container_start_page 847
container_title International Mathematics Research Notices
container_volume 2002
creator Agrebaoui, B.
Ammar, F.
Lecomte, P.
Ovsienko, V.
description The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of linear differential operators on ℝv provides an important classof such formal deformations; we show, however, that the whole space of deformations is much larger.
doi_str_mv 10.1155/S1073792802101127
format Article
fullrecord <record><control><sourceid>istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_HXZ_1LW2PVF7_G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_HXZ_1LW2PVF7_G</sourcerecordid><originalsourceid>FETCH-istex_primary_ark_67375_HXZ_1LW2PVF7_G3</originalsourceid><addsrcrecordid>eNqVjsFqAjEURUOxUK39gO7yA9G8DGPGdal1UUtBaYubkDIvNG1ihpcI-vedAX_A1T2XcxeXsUeQM4C6nm9B6kovVSMVSAClb9gYFo0WAEs96rnXYvB3bJLzr5RKQlON2dvmGIoXnSUbsSDxFl2iaItPh8yT4-UHeUztMeDQ8jl-pzCI1juHhIfibeCpQ7IlUZ6yW2dDxodL3jOxet49rYXPBU-mIx8tnY2lP7Po_9Zm_bU38Pqp3j9W2rxU1-7_AbVJTJo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-parameter deformations of the module of symbols ofdifferential operators</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Agrebaoui, B. ; Ammar, F. ; Lecomte, P. ; Ovsienko, V.</creator><creatorcontrib>Agrebaoui, B. ; Ammar, F. ; Lecomte, P. ; Ovsienko, V.</creatorcontrib><description>The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of linear differential operators on ℝv provides an important classof such formal deformations; we show, however, that the whole space of deformations is much larger.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-1197</identifier><identifier>DOI: 10.1155/S1073792802101127</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Notices, 2002, Vol.2002 (16), p.847-869</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Agrebaoui, B.</creatorcontrib><creatorcontrib>Ammar, F.</creatorcontrib><creatorcontrib>Lecomte, P.</creatorcontrib><creatorcontrib>Ovsienko, V.</creatorcontrib><title>Multi-parameter deformations of the module of symbols ofdifferential operators</title><title>International Mathematics Research Notices</title><description>The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of linear differential operators on ℝv provides an important classof such formal deformations; we show, however, that the whole space of deformations is much larger.</description><issn>1073-7928</issn><issn>1687-1197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqVjsFqAjEURUOxUK39gO7yA9G8DGPGdal1UUtBaYubkDIvNG1ihpcI-vedAX_A1T2XcxeXsUeQM4C6nm9B6kovVSMVSAClb9gYFo0WAEs96rnXYvB3bJLzr5RKQlON2dvmGIoXnSUbsSDxFl2iaItPh8yT4-UHeUztMeDQ8jl-pzCI1juHhIfibeCpQ7IlUZ6yW2dDxodL3jOxet49rYXPBU-mIx8tnY2lP7Po_9Zm_bU38Pqp3j9W2rxU1-7_AbVJTJo</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Agrebaoui, B.</creator><creator>Ammar, F.</creator><creator>Lecomte, P.</creator><creator>Ovsienko, V.</creator><general>Hindawi Publishing Corporation</general><scope>BSCLL</scope></search><sort><creationdate>2002</creationdate><title>Multi-parameter deformations of the module of symbols ofdifferential operators</title><author>Agrebaoui, B. ; Ammar, F. ; Lecomte, P. ; Ovsienko, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-istex_primary_ark_67375_HXZ_1LW2PVF7_G3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrebaoui, B.</creatorcontrib><creatorcontrib>Ammar, F.</creatorcontrib><creatorcontrib>Lecomte, P.</creatorcontrib><creatorcontrib>Ovsienko, V.</creatorcontrib><collection>Istex</collection><jtitle>International Mathematics Research Notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrebaoui, B.</au><au>Ammar, F.</au><au>Lecomte, P.</au><au>Ovsienko, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-parameter deformations of the module of symbols ofdifferential operators</atitle><jtitle>International Mathematics Research Notices</jtitle><date>2002</date><risdate>2002</risdate><volume>2002</volume><issue>16</issue><spage>847</spage><epage>869</epage><pages>847-869</pages><issn>1073-7928</issn><eissn>1687-1197</eissn><abstract>The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of linear differential operators on ℝv provides an important classof such formal deformations; we show, however, that the whole space of deformations is much larger.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/S1073792802101127</doi></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International Mathematics Research Notices, 2002, Vol.2002 (16), p.847-869
issn 1073-7928
1687-1197
language eng
recordid cdi_istex_primary_ark_67375_HXZ_1LW2PVF7_G
source Oxford University Press Journals All Titles (1996-Current)
title Multi-parameter deformations of the module of symbols ofdifferential operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-parameter%20deformations%20of%20the%20module%20of%20symbols%20ofdifferential%20operators&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.au=Agrebaoui,%20B.&rft.date=2002&rft.volume=2002&rft.issue=16&rft.spage=847&rft.epage=869&rft.pages=847-869&rft.issn=1073-7928&rft.eissn=1687-1197&rft_id=info:doi/10.1155/S1073792802101127&rft_dat=%3Cistex%3Eark_67375_HXZ_1LW2PVF7_G%3C/istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true