Multi-parameter deformations of the module of symbols ofdifferential operators

The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Mathematics Research Notices 2002, Vol.2002 (16), p.847-869
Hauptverfasser: Agrebaoui, B., Ammar, F., Lecomte, P., Ovsienko, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of linear differential operators on ℝv provides an important classof such formal deformations; we show, however, that the whole space of deformations is much larger.
ISSN:1073-7928
1687-1197
DOI:10.1155/S1073792802101127