Multi-parameter deformations of the module of symbols ofdifferential operators
The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of lin...
Gespeichert in:
Veröffentlicht in: | International Mathematics Research Notices 2002, Vol.2002 (16), p.847-869 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The space of symbols of differential operators on a smooth manifold (i.e., the space of symmetric contravariant tensor fields) is naturally a module over the Lie algebra of vector fields. We study, in the case of ℝv with v ≥ 2, the multi-parameter formal deformations of this module. The space of linear differential operators on ℝv provides an important classof such formal deformations; we show, however, that the whole space of deformations is much larger. |
---|---|
ISSN: | 1073-7928 1687-1197 |
DOI: | 10.1155/S1073792802101127 |