Glassy state of native collagen fibril?
Our micromechanical experiments show that viscoelastic features of type-I collagen fibril at physiological temperatures display essential dependence on the frequency and speed of heating. For temperatures of 20–30 °C the internal friction has a sharp maximum for a frequency less than 2 kHz. Upon hea...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2011-07, Vol.95 (2), p.23001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our micromechanical experiments show that viscoelastic features of type-I collagen fibril at physiological temperatures display essential dependence on the frequency and speed of heating. For temperatures of 20–30 °C the internal friction has a sharp maximum for a frequency less than 2 kHz. Upon heating the internal friction displays a peak at a temperature Tsoft(v) that essentially depends on the speed of heating v: Tsoft≈70 °C for v=1 °C/min, and Tsoft≈25 °C for v=0.1 °C/min. At the same temperature Tsoft(v) Young's modulus passes through a minimum. All these effects are specific for the native state of the fibril and disappear after heat-denaturation. Taken together with the known facts that the fibril is axially ordered as quasicrystal, but disordered laterally, we interpret our findings as indications of a glassy state, where Tsoft is the softening transition. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/95/23001 |