The geometrical factor of spherical radiation sources

The geometrical factor of a spherical isotropic source of radiation when viewed from a flat cosine (Lambertian) receiver is $B = \Omega (1 - \frac{\Omega}{4\pi}) \cos \theta_0$, where Ω is the solid angle subtended by the source, while $\theta_0$ is the source's zenith angle. Two different deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2000-06, Vol.50 (6), p.816-822
Hauptverfasser: Landsberg, P. T, Badescu, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The geometrical factor of a spherical isotropic source of radiation when viewed from a flat cosine (Lambertian) receiver is $B = \Omega (1 - \frac{\Omega}{4\pi}) \cos \theta_0$, where Ω is the solid angle subtended by the source, while $\theta_0$ is the source's zenith angle. Two different derivations of this result are given in this paper. It holds also for diffuse radiation received from a hemispherical dome. Geometrical factors can also be defined for non-isotropic sources of radiation. Taking into account the limb darkening effect leads to solar temperatures of about 6100 K or 6000 K in a better approximation. These are higher than the value derived assuming the Sun to emit radiation isotropically (5770 K).
ISSN:0295-5075
1286-4854
DOI:10.1209/epl/i2000-00554-7