Dynamic scaling of bred vectors in spatially extended chaotic systems
We unfold a profound relationship between the dynamics of finite-size perturbations in spatially extended chaotic systems and the universality class of Kardar-Parisi-Zhang (KPZ). We show how this relationship can be exploited to obtain a complete theoretical description of the bred vectors dynamics....
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2006-12, Vol.76 (5), p.767-773 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We unfold a profound relationship between the dynamics of finite-size perturbations in spatially extended chaotic systems and the universality class of Kardar-Parisi-Zhang (KPZ). We show how this relationship can be exploited to obtain a complete theoretical description of the bred vectors dynamics. The existence of characteristic length/time scales, the spatial extent of spatial correlations and how to tune it, and the role of the breeding amplitude are all analyzed in the light of our theory. Implications to weather forecasting based on ensembles of initial conditions are also discussed. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/epl/i2006-10370-7 |