Continuous-time random walk theory of superslow diffusion

Superslow diffusion, i.e., the long-time diffusion of particles whose mean-square displacement (variance) grows slower than any power of time, is studied in the framework of the decoupled continuous-time random walk model. We show that this behavior of the variance occurs when the complementary cumu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2010-11, Vol.92 (3), p.30001
Hauptverfasser: Denisov, S. I, Kantz, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superslow diffusion, i.e., the long-time diffusion of particles whose mean-square displacement (variance) grows slower than any power of time, is studied in the framework of the decoupled continuous-time random walk model. We show that this behavior of the variance occurs when the complementary cumulative distribution function of waiting times is asymptotically described by a slowly varying function. In this case, we derive a general representation of the laws of superslow diffusion for both biased and unbiased versions of the model and, to illustrate the obtained results, consider two particular classes of waiting-time distributions.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/92/30001