Significant improvement in electronic properties of transparent amorphous indium zinc oxide through yttrium doping
One big challenge in transparent conducting oxides (TCOs) is to achieve high conductivity and mobility at a low processing temperature. Although optimized conductivity has been achieved in indium zinc oxide (IZO) without doping, it is still interesting to find whether doping can improve conductivity...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2014-04, Vol.106 (1), p.17006-P1-17006-p6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One big challenge in transparent conducting oxides (TCOs) is to achieve high conductivity and mobility at a low processing temperature. Although optimized conductivity has been achieved in indium zinc oxide (IZO) without doping, it is still interesting to find whether doping can improve conductivity of IZO further. In this paper, we report a low processing temperature achievement of high conductivity and mobility of IZO through yttrium (Y) doping. We found that with different Y doping levels, room temperature fabricated amorphous IZO (a-IZO) samples can be controlled to exhibit either metallic or semiconductor characteristics. Y2O3 is demonstrated to be an effective doping source to achieve conductivity 300% higher than the non-doped IZO sample. Anomalously improved mobility of certain Y2O3-doped IZO samples compared with the non-doped IZO sample is found and analyzed. Besides, a low-temperature resistivity anomaly (semiconductor metal transition) phenomenon is observed and discussed. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/106/17006 |