Modeling elastic momentum transfer cross-sections from mobility data
In this letter we present a new method to simply obtain the elastic momentum transfer cross-section which predicts a maximum of reduced mobility and its sensitivity to the temperature variation at low energies. We first determined the transport cross-section which resembles mobility data for similar...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2016-04, Vol.114 (2), p.25001-25001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter we present a new method to simply obtain the elastic momentum transfer cross-section which predicts a maximum of reduced mobility and its sensitivity to the temperature variation at low energies. We first determined the transport cross-section which resembles mobility data for similar closed-shell systems by using the Monte Carlo method. Second, we selected the most probable reactive processes and compiled cross-sections from experimental and theoretical data. At the end, an elastic momentum transfer cross-section is obtained by subtracting the compiled cross-sections from the momentum transfer cross-section, taking into account the effects of the angular scattering distributions. Finally, the cross-section set determined in such a way is used as an input in a final Monte Carlo code run, to calculate the flux and bulk reduced mobility for Ne+ + CF4 which were discussed as functions of the reduced electric field E/N (N is the gas density) for the temperature T = 300 K. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/114/25001 |