The Kuramoto model with distributed shear

We uncover a solvable generalization of the Kuramoto model in which shears (or nonisochronicities) and natural frequencies are distributed and statistically dependent. We show that the strength and sign of this dependence greatly alter synchronization and yield qualitatively different phase diagrams...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2011-09, Vol.95 (6), p.60007
Hauptverfasser: Pazó, D, Montbrió, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We uncover a solvable generalization of the Kuramoto model in which shears (or nonisochronicities) and natural frequencies are distributed and statistically dependent. We show that the strength and sign of this dependence greatly alter synchronization and yield qualitatively different phase diagrams. The Ott-Antonsen ansatz allows us to obtain analytical results for a specific family of joint distributions. We also derive, using linear stability analysis, general formulae for the stability border of incoherence.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/95/60007