Thermal and structural characterization of the ZrO2−x(OH)2xto ZrO2 transition

The exothermic process that occurs around 700 K during calcination of ZrO2−x(OH)2x, associated with the crystallization of the low-temperature tetragonal metastable phase of ZrO2, was analyzed using x-ray diffraction, high-resolution thermogravimetric analysis (TGA), nitrogen adsorption, and modulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2001-08, Vol.16 (8), p.2209-2212
Hauptverfasser: Torres-GarciÁa, E, Peláiz-Barranco, A., Vázquez-Ramos, C., Fuentes, G. A.
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exothermic process that occurs around 700 K during calcination of ZrO2−x(OH)2x, associated with the crystallization of the low-temperature tetragonal metastable phase of ZrO2, was analyzed using x-ray diffraction, high-resolution thermogravimetric analysis (TGA), nitrogen adsorption, and modulated differential scanning calorimetry (MDSC). High-resolution TGA allowed us to determine the water loss, resulting from condensation of OH− groups. The amount was 0.137 wt% in our case, equivalent to 1.7 × 10−2 mol of H2O/mol of ZrO2. That corresponds to about one −OH group per nm2 being lost in that process. By using MDSC we determined that the change in enthalpy (∆Hglobal = −15.49 kJ/mol of ZrO2) was the result of two parallel contributions. One of them was reversible and endothermic (∆Hrev = 0.11 kJ/mol of ZrO2), whereas the other was irreversible and exothermic (∆Hirrev = −15.60 kJ/mol of ZrO2). The variability and magnitude of the exotherm, as well as the fact that the accompanying weight loss is so small, are consistent with a mechanism involving the formation of tetragonal nuclei, rather than global crystallization, and hence depend on the number of nuclei so formed.
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.2001.0303