Commuting rings of simple A(k)-modules
For the Weyl algebra A(k) and each finite dimensional division ring D over k, there exists a simple A(k)-module whose commuting ring is D. It has been known for some time that if A(k) denotes the Weyl algebra over a field k of characteristic zero, the commuting ring of a simple A(k)-module is a divi...
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 1981-08, Vol.31 (2), p.142-145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the Weyl algebra A(k) and each finite dimensional division ring D over k, there exists a simple A(k)-module whose commuting ring is D. It has been known for some time that if A(k) denotes the Weyl algebra over a field k of characteristic zero, the commuting ring of a simple A(k)-module is a division algebra finite dimensional over k (see the introduction of [1]). Which division algebras actually appear? Quebbemann [1] showed that if D is a finite dimensional division algebra whose center is k, then it occurs as a commuting ring. We complete this circle of ideas by showing that any D appears: a division algebra over k appears as the commuting ring of a simple A(k)-module if and only if it is finite dimensional over k. |
---|---|
ISSN: | 0263-6115 1446-7887 1446-8107 |
DOI: | 10.1017/S1446788700033413 |