Commuting rings of simple A(k)-modules

For the Weyl algebra A(k) and each finite dimensional division ring D over k, there exists a simple A(k)-module whose commuting ring is D. It has been known for some time that if A(k) denotes the Weyl algebra over a field k of characteristic zero, the commuting ring of a simple A(k)-module is a divi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 1981-08, Vol.31 (2), p.142-145
Hauptverfasser: Farkas, Daniel R., Snider, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the Weyl algebra A(k) and each finite dimensional division ring D over k, there exists a simple A(k)-module whose commuting ring is D. It has been known for some time that if A(k) denotes the Weyl algebra over a field k of characteristic zero, the commuting ring of a simple A(k)-module is a division algebra finite dimensional over k (see the introduction of [1]). Which division algebras actually appear? Quebbemann [1] showed that if D is a finite dimensional division algebra whose center is k, then it occurs as a commuting ring. We complete this circle of ideas by showing that any D appears: a division algebra over k appears as the commuting ring of a simple A(k)-module if and only if it is finite dimensional over k.
ISSN:0263-6115
1446-7887
1446-8107
DOI:10.1017/S1446788700033413