On the self-similarity in quantum Hall systems
The Hall-resistance curve of a two-dimensional electron system in the presence of a strong perpendicular magnetic field is an example of self-similarity. It reveals plateaus at low temperatures and has a fractal structure. We show that this fractal structure emerges naturally in the Hamiltonian form...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2004-10, Vol.68 (1), p.72-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Hall-resistance curve of a two-dimensional electron system in the presence of a strong perpendicular magnetic field is an example of self-similarity. It reveals plateaus at low temperatures and has a fractal structure. We show that this fractal structure emerges naturally in the Hamiltonian formulation of composite fermions. After a set of transformations on the electronic model, we show that the model, which describes interacting composite fermions in a partially filled energy level, is self-similar. This mathematical property allows for the construction of a basis of higher generations of composite fermions. The collective-excitation dispersion of the recently observed 4/11 fractional-quantum-Hall state is discussed within the present formalism. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/epl/i2004-10215-5 |