On the self-similarity in quantum Hall systems

The Hall-resistance curve of a two-dimensional electron system in the presence of a strong perpendicular magnetic field is an example of self-similarity. It reveals plateaus at low temperatures and has a fractal structure. We show that this fractal structure emerges naturally in the Hamiltonian form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2004-10, Vol.68 (1), p.72-78
Hauptverfasser: Goerbig, M. O, Lederer, P, Smith, C. Morais
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Hall-resistance curve of a two-dimensional electron system in the presence of a strong perpendicular magnetic field is an example of self-similarity. It reveals plateaus at low temperatures and has a fractal structure. We show that this fractal structure emerges naturally in the Hamiltonian formulation of composite fermions. After a set of transformations on the electronic model, we show that the model, which describes interacting composite fermions in a partially filled energy level, is self-similar. This mathematical property allows for the construction of a basis of higher generations of composite fermions. The collective-excitation dispersion of the recently observed 4/11 fractional-quantum-Hall state is discussed within the present formalism.
ISSN:0295-5075
1286-4854
DOI:10.1209/epl/i2004-10215-5