Correlation length of the 1D Hubbard model at half-filling: Equal-time one-particle Green's function

The asymptotics of the equal-time one-particle Green's function of the half-filled one-dimensional Hubbard model is studied at finite temperature. We calculate its correlation length by evaluating the largest and the second largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2003-05, Vol.62 (3), p.384-390
Hauptverfasser: Umeno, Y, Shiroishi, M, Klümper, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The asymptotics of the equal-time one-particle Green's function of the half-filled one-dimensional Hubbard model is studied at finite temperature. We calculate its correlation length by evaluating the largest and the second largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to allow for the genuinely fermionic nature of the one-particle Green's function, we employ the fermionic formulation of the QTM based on the fermionic R-operator of the Hubbard model. The purely imaginary value of the second largest eigenvalue reflects the $k_{\ab{F}} (= \pi/2)$ oscillations of the one-particle Green's function at half-filling. By solving numerically the Bethe ansatz equations with Trotter numbers up to N=10240, we obtain accurate data for the correlation length at finite temperatures down into the very low-temperature region. The correlation length remains finite even at T=0 due to the existence of the charge gap. Our numerical data confirm Stafford and Millis' conjecture regarding an analytic expression for the correlation length at T=0.
ISSN:0295-5075
1286-4854
DOI:10.1209/epl/i2003-00408-4