Fractal growth from local instabilities

We study, both with numerical simulations and theoretical methods, a cellular automata model for surface growth in the presence of a local instability, driven by an external flux of particles. The growing tip is selected with probability proportional to the local curvature. A probability p of develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2001-04, Vol.54 (2), p.187-193
Hauptverfasser: Cafiero, R, Caldarelli, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study, both with numerical simulations and theoretical methods, a cellular automata model for surface growth in the presence of a local instability, driven by an external flux of particles. The growing tip is selected with probability proportional to the local curvature. A probability p of developing overhangs through lateral growth is also introduced. For small external fluxes, we find a fractal regime of growth. The value of p determines the fractal dimension of the aggregate. Furthermore, for each value of p a crossover between two different fractal dimensions is observed. The roughness exponent χ of the aggregates, instead, does not depend on p ($\chi \simeq 0.5$). A Fixed Scale Transformation (FST) approach is applied to compute theoretically the fractal dimension for one of the branches of the structure.
ISSN:0295-5075
1286-4854
DOI:10.1209/epl/i2001-00294-2