The 3d random field Ising model at zero temperature

We study numerically the zero-temperature random field Ising model on cubic lattices of various linear sizes L in three dimensions. For each random field configuration we vary the ferromagnetic coupling strength J. We find that in the infinite volume limit the magnetization is discontinuous in J. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 1997-09, Vol.39 (5), p.473-478
Hauptverfasser: d'Auriac, J.-C. Anglès, Sourlas, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study numerically the zero-temperature random field Ising model on cubic lattices of various linear sizes L in three dimensions. For each random field configuration we vary the ferromagnetic coupling strength J. We find that in the infinite volume limit the magnetization is discontinuous in J. The energy and its first J derivative are continuous. The approach to the thermodynamic limit is slow, behaving like $L^{-p}$ with $p \sim 0.8 $ for the Gaussian distribution of the random field. We also study the bimodal distribution $h_{i} = \pm h$, and we find similar results for the magnetization but with a different value of the exponent $p \sim 0.6 $. This raises the question of the validity of universality for the random field problem.
ISSN:0295-5075
1286-4854
DOI:10.1209/epl/i1997-00379-x