Conductance through quantum wires with Lévy-type disorder: Universal statistics in anomalous quantum transport
In this letter we study the conductance G through one-dimensional quantum wires with disorder configurations characterized by long-tailed distributions (Lévy-type disorder). We calculate analytically the conductance distribution which reveals a universal statistics: the distribution of conductances...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2010-12, Vol.92 (5), p.57014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter we study the conductance G through one-dimensional quantum wires with disorder configurations characterized by long-tailed distributions (Lévy-type disorder). We calculate analytically the conductance distribution which reveals a universal statistics: the distribution of conductances is fully determined by the exponent α of the power-law decay of the disorder distribution and the average ⟨ln G⟩, i.e., all other details of the disorder configurations are irrelevant. For 0 |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/92/57014 |