Hypothesis of strong chaos and anomalous diffusion in coupled symplectic maps

We investigate the high-dimensional Hamiltonian chaotic dynamics in N coupled area-preserving maps. We show the existence of an enhanced trapping regime caused by trajectories performing a random walk inside the area corresponding to regular islands of the uncoupled maps. As a consequence, we observ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2007-04, Vol.78 (1), p.10008-10008 (5)
Hauptverfasser: Altmann, E. G, Kantz, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the high-dimensional Hamiltonian chaotic dynamics in N coupled area-preserving maps. We show the existence of an enhanced trapping regime caused by trajectories performing a random walk inside the area corresponding to regular islands of the uncoupled maps. As a consequence, we observe long intermediate regimes of power law decay of the recurrence time statistics (with exponent $\gamma =0.5$) and of ballistic motion. The asymptotic decay of correlations and anomalous diffusion depend on the stickiness of the N-dimensional invariant tori. Detailed numerical simulations show weaker stickiness for increasing N suggesting that such paradigmatic class of Hamiltonian systems asymptotically fulfill the demands of the usual hypotheses of strong chaos.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/78/10008