An Explanation for the Observed Weak Size Evolution of Disk Galaxies

Surveys of distant galaxies with the Hubble Space Telescope and from the ground have shown that there is only mild evolution in the relationship between radial size and stellar mass for galactic disks from z similar to 1 to the present day. Using a sample of nearby disk-dominated galaxies from the S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2008-01, Vol.672 (2), p.776-786
Hauptverfasser: Somerville, Rachel S, Barden, Marco, Rix, Hans-Walter, Bell, Eric F, Beckwith, Steven V. W, Borch, Andrea, Caldwell, John A. R, Häußler, Boris, Heymans, Catherine, Jahnke, Knud, Jogee, Shardha, McIntosh, Daniel H, Meisenheimer, Klaus, Peng, Chien Y, Sánchez, Sebastian F, Wisotzki, Lutz, Wolf, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surveys of distant galaxies with the Hubble Space Telescope and from the ground have shown that there is only mild evolution in the relationship between radial size and stellar mass for galactic disks from z similar to 1 to the present day. Using a sample of nearby disk-dominated galaxies from the Sloan Digital Sky Survey (SDSS) and high-redshift data from the GEMS (Galaxy Evolution from Morphology and SEDs) survey, we investigate whether this result is consistent with theoretical expectations within the hierarchical paradigm of structure formation. The relationship between virial radius and mass for dark matter halos in the Lambda CDM model evolves by about a factor of 2 over this interval. However, N-body simulations have shown that halos of a given mass have less centrally concentrated mass profiles at high redshift. When we compute the expected disk size-stellar mass distribution, accounting for this evolution in the internal structure of dark matter halos and the adiabatic contraction of the dark matter by the self-gravity of the collapsing baryons, we find that the predicted evolution in the mean size at fixed stellar mass since z similar to 1 is about 15%-20%, in good agreement with the observational constraints from GEMS. At redshift z similar to 2, the model predicts that disks at fixed stellar mass were on average only 60% as large as they are today. Similarly, we predict that the rotation velocity at a given stellar mass (essentially the zero point of the Tully-Fisher relation) is only about 10% larger at z similar to 1 (20% at z similar to 2) than at the present day.
ISSN:0004-637X
1538-4357
DOI:10.1086/523661