Optimization of narrow width effect on titanium thermistor in uncooled antenna-coupled terahertz microbolometer

Uncooled antenna-coupled terahertz microbolometer arrays are fabricated with a meander-type Ti thermistor, and design widths (DW) = 0.1 and 0.2 µm, considering the design requirement to miniaturize detectors. Each unit device with DW = 0.1 µm of the thermistor has about 4.7 time higher electrical re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2018-04, Vol.57 (4S), p.4
Hauptverfasser: Banerjee, Amit, Satoh, Hiroaki, Elamaran, Durgadevi, Sharma, Yash, Hiromoto, Norihisa, Inokawa, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uncooled antenna-coupled terahertz microbolometer arrays are fabricated with a meander-type Ti thermistor, and design widths (DW) = 0.1 and 0.2 µm, considering the design requirement to miniaturize detectors. Each unit device with DW = 0.1 µm of the thermistor has about 4.7 time higher electrical responsivity (132 V/W) than that with DW = 0.2 µm (28.2 V/W) at 10 µA bias current. For DW = 0.2 µm, the calculated noise equivalent power (NEP) was 2.29 × 10−9 W/, whereas the minimum NEP of 4.43 × 10−10 W/ was obtained for DW = 0.1 µm devices, both at 10 µA bias current. The bulk value of temperature coefficient of resistance (TCR) of the Ti thermistor is markedly compromised in low dimensional devices, still in terms of responsivity and NEP, unit devices with Ti thermistor with the lower DW shows better performance. This is because the narrow width effect is minimized owing to higher resistivity for DW = 0.1 than that for DW = 0.2 µm. In this current report, we highlights the optimization of the narrow width effect on TCR of metal interconnects in nanometer dimensions, which to the best of our knowledge is not available at present.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.57.04FC09