Optimal memory configuration analysis in tri-hybrid solid-state drives with storage class memory and multi-level cell/triple-level cell NAND flash memory

This paper analyzes the best mix of memories in a tri-hybrid solid-state drive (SSD) with storage class memory (SCM) and multi-level cell (MLC)/triple-level cell (TLC) NAND flash memory. SCM is fast but its cost is high. Although MLC NAND flash memory is slow, it is more cost effective than SCM. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2017-04, Vol.56 (4S), p.4-04CE02
Hauptverfasser: Matsui, Chihiro, Yamada, Tomoaki, Sugiyama, Yusuke, Yamaga, Yusuke, Takeuchi, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes the best mix of memories in a tri-hybrid solid-state drive (SSD) with storage class memory (SCM) and multi-level cell (MLC)/triple-level cell (TLC) NAND flash memory. SCM is fast but its cost is high. Although MLC NAND flash memory is slow, it is more cost effective than SCM. For further cost efficiency, TLC NAND flash memory is denser and less expensive than MLC NAND flash. Performance of tri-hybrid SSD is evaluated in various memory configurations. Moreover, the optimum memory configuration is changed according to the application characteristics. If 10% cost increase is allowed compared to the MLC NAND flash only SSD, SCM/MLC NAND flash hybrid SSD provides the best performance with hot/random workload, whereas SCM/MLC/TLC NAND flash tri-hybrid SSD achieves the best for hot/sequential and cold/random workloads. In addition, it is possible to add long latency but low-cost SCM to the tri-hybrid SSD. As a result, tri-hybrid SSD with slow SCM achieves the best performance.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.56.04CE02