Winter Weakening of Titan's Stratospheric Polar Vortices

Polar vortices are a prominent feature in Titan's stratosphere. The Cassini mission has provided a detailed view of the breakdown of the northern polar vortex and formation of the southern vortex, but the mission did not observe the full annual cycle of the evolution of the vortices. Here we us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The planetary science journal 2022-04, Vol.3 (4), p.73
Hauptverfasser: Shultis, J., Waugh, D. W., Toigo, A. D., Newman, C. E., Teanby, N. A., Sharkey, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polar vortices are a prominent feature in Titan's stratosphere. The Cassini mission has provided a detailed view of the breakdown of the northern polar vortex and formation of the southern vortex, but the mission did not observe the full annual cycle of the evolution of the vortices. Here we use a TitanWRF general circulation model simulation of an entire Titan year to examine the full annual cycle of the polar vortices. The simulation reveals a winter weakening of the vortices, with a clear minimum in polar potential vorticity and midlatitude zonal winds between winter solstice and spring equinox. The simulation also produces the observed postfall equinox cooling followed by rapid warming in the upper stratosphere. This warming is due to strong descent and adiabatic heating, which also leads to the formation of an annular potential vorticity structure. The seasonal evolution of the polar vortices is very similar in the two hemispheres, with only small quantitative differences that are much smaller than the seasonal variations, which can be related to Titan's orbital eccentricity. This suggests that any differences between observations of the northern hemisphere vortex in late northern winter and the southern hemisphere vortex in early winter are likely due to the different observation times with respect to solstice, rather than fundamental differences in the polar vortices.
ISSN:2632-3338
2632-3338
DOI:10.3847/PSJ/ac5ea1