Tidal Disruption Events from Stripped Stars
Observations of tidal disruption events (TDEs) show signs of nitrogen enrichment reminiscent of other astrophysical sources such as active galactic nuclei and star-forming galaxies. Given that TDEs probe the gas from a single star, it is possible to test whether the observed enrichment is consistent...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2024-09, Vol.973 (1), p.L9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Observations of tidal disruption events (TDEs) show signs of nitrogen enrichment reminiscent of other astrophysical sources such as active galactic nuclei and star-forming galaxies. Given that TDEs probe the gas from a single star, it is possible to test whether the observed enrichment is consistent with expectations from the CNO cycle by looking at the observed nitrogen/carbon (N/C) abundance ratios. Given that ≈20% of solar-mass stars (and an even larger fraction of more massive stars) live in close binaries, it is worthwhile to also consider what TDEs from stars influenced by binary evolution would look like. We show here that TDEs from stars stripped of their hydrogen-rich (and nitrogen-poor) envelopes through previous binary-induced mass loss can produce much higher observable N/C enhancements than even TDEs from massive stars. Additionally, we predict that the time dependence of the N/C abundance ratio in the mass fallback rate of stripped stars will follow the inverse behavior of main-sequence stars, enabling a more accurate characterization of the disrupted star. |
---|---|
ISSN: | 2041-8205 2041-8213 |
DOI: | 10.3847/2041-8213/ad6c34 |