Robust Field-level Likelihood-free Inference with Galaxies

We train graph neural networks to perform field-level likelihood-free inference using galaxy catalogs from state-of-the-art hydrodynamic simulations of the CAMELS project. Our models are rotational, translational, and permutation invariant and do not impose any cut on scale. From galaxy catalogs tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-07, Vol.952 (1), p.69
Hauptverfasser: de Santi, Natalí S. M., Shao, Helen, Villaescusa-Navarro, Francisco, Abramo, L. Raul, Teyssier, Romain, Villanueva-Domingo, Pablo, Ni, Yueying, Anglés-Alcázar, Daniel, Genel, Shy, Hernández-Martínez, Elena, Steinwandel, Ulrich P., Lovell, Christopher C., Dolag, Klaus, Castro, Tiago, Vogelsberger, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We train graph neural networks to perform field-level likelihood-free inference using galaxy catalogs from state-of-the-art hydrodynamic simulations of the CAMELS project. Our models are rotational, translational, and permutation invariant and do not impose any cut on scale. From galaxy catalogs that only contain 3D positions and radial velocities of ∼1000 galaxies in tiny ( 25 h − 1 Mpc ) 3 volumes our models can infer the value of Ω m with approximately 12% precision. More importantly, by testing the models on galaxy catalogs from thousands of hydrodynamic simulations, each having a different efficiency of supernova and active galactic nucleus feedback, run with five different codes and subgrid models—IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE—we find that our models are robust to changes in astrophysics, subgrid physics, and subhalo/galaxy finder. Furthermore, we test our models on 1024 simulations that cover a vast region in parameter space—variations in five cosmological and 23 astrophysical parameters—finding that the model extrapolates really well. Our results indicate that the key to building a robust model is the use of both galaxy positions and velocities, suggesting that the network has likely learned an underlying physical relation that does not depend on galaxy formation and is valid on scales larger than ∼10 h −1 kpc.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/acd1e2