Neutrino Properties with Ground-based Millimeter-wavelength Line Intensity Mapping
Line intensity mapping (LIM) is emerging as a powerful technique to map the cosmic large-scale structure and to probe cosmology over a wide range of redshifts and spatial scales. We perform Fisher forecasts to determine the optimal design of wide-field ground-based millimeter-wavelength LIM surveys...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-02, Vol.926 (2), p.137 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Line intensity mapping (LIM) is emerging as a powerful technique to map the cosmic large-scale structure and to probe cosmology over a wide range of redshifts and spatial scales. We perform Fisher forecasts to determine the optimal design of wide-field ground-based millimeter-wavelength LIM surveys for constraining properties of neutrinos and light relics. We consider measuring the auto-power spectra of several CO rotational lines (from
J
= 2–1 to
J
= 6–5) and the [C
ii
] fine-structure line in the redshift range of 0.25 <
z
< 12. We study the constraints with and without interloper lines as a source of noise in our analysis, and for several one-parameter and multiparameter extensions of ΛCDM. We show that LIM surveys deployable this decade, in combination with existing cosmic microwave background (CMB; primary) data, could achieve order-of-magnitude improvements over Planck constraints on
N
eff
and
M
ν
. Compared to next-generation CMB and galaxy surveys, a LIM experiment of this scale could achieve bounds that are a factor of ∼3 better than those forecasted for surveys such as EUCLID (galaxy clustering), and potentially exceed the constraining power of CMB-S4 by a factor of ∼1.5 and ∼3 for
N
eff
and
M
ν
, respectively. We show that the forecasted constraints are not substantially affected when enlarging the parameter space, and additionally demonstrate that such a survey could also be used to measure ΛCDM parameters and the dark energy equation of state exquisitely well. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ac3edd |