Optical Studies of 10 Hard X-Ray-selected Cataclysmic Binaries

We conducted time-resolved optical spectroscopy and/or photometry of 10 cataclysmic binaries that were discovered in hard X-ray surveys, with the goal of measuring their orbital periods and searching for evidence that they are magnetic. Four of the objects in this study are new optical identificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-01, Vol.924 (2), p.67
Hauptverfasser: Halpern, Jules P., Thorstensen, John R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We conducted time-resolved optical spectroscopy and/or photometry of 10 cataclysmic binaries that were discovered in hard X-ray surveys, with the goal of measuring their orbital periods and searching for evidence that they are magnetic. Four of the objects in this study are new optical identifications: IGR J18017−3542, PBC J1841.1+0138, IGR J18434−0508, and Swift J1909.3+0124. A 311.8 s, coherent optical pulsation is detected from PBC J1841.1+0138, as well as eclipses with a period of 0.221909 days. A 152.49 s coherent period is detected from IGR J18434−0508. A probable period of 389 s is seen in IGR J18151−1052, in agreement with a known X-ray spin period. We also detect a period of 803.5 s in an archival X-ray observation of Swift J0717.8−2156. The last four objects are thus confirmed magnetic cataclysmic variables of the intermediate polar class. An optical period of 1554 s in AX J1832.3−0840 also confirms the known X-ray spin period, but a stronger signal at 2303 s is present whose interpretation is not obvious. We also studied the candidate intermediate polar Swift J0820.6−2805, which has low and high states differing by ≈4 mag and optical periods or quasi-periodic oscillations not in agreement with proposed X-ray periods. Of note is an unusually long 2.06-day orbital period for Swift J1909.3+0124, manifest in the radial velocity variation of photospheric absorption lines of an early K-type companion star. The star must be somewhat evolved if it is to fill its Roche lobe.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac2f9f