Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations

Parker Solar Probe (PSP) observed a large variety of Alfvénic fluctuations in the fast and slow solar wind flow during its two perihelia. The properties of Alfvénic solar wind turbulence have been studied for decades in the near-Earth environment. A spectral index of −5/3 or −2 for magnetic field fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-08, Vol.898 (2), p.113
Hauptverfasser: Zhao, L.-L., Zank, G. P., Adhikari, L., Nakanotani, M., Telloni, D., Carbone, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parker Solar Probe (PSP) observed a large variety of Alfvénic fluctuations in the fast and slow solar wind flow during its two perihelia. The properties of Alfvénic solar wind turbulence have been studied for decades in the near-Earth environment. A spectral index of −5/3 or −2 for magnetic field fluctuations has been observed using spacecraft measurements, which can be explained by turbulence theories of nearly incompressible magnetohydrodynamics (NI MHD) or critical balance. In this study, a rigorous search of field-aligned solar wind is applied to PSP measurements for the first time, which yields two events in the apparently slow solar wind. The parallel spectra of the magnetic fluctuations in the inertial range show a power law. Probability distributions of the magnetic field show that these events are not contaminated by intermittent structures, which, according to previous studies, are known to modify spectral properties. The results presented here are consistent with spectral predictions from NI MHD theory and further deepen our understanding of the Alfvénic solar wind turbulence near the Sun.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab9b7e