Explosive Nucleosynthesis in Sub-Chandrasekhar-mass White Dwarf Models for Type Ia Supernovae: Dependence on Model Parameters

Recent observations of Type Ia supernovae (SNe Ia) have shown diversified properties of the explosion strength, light curves, and chemical composition. To investigate possible origins of such diversities in SNe Ia, we have presented multidimensional hydrodynamical studies of explosions and associate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-01, Vol.888 (2), p.80
Hauptverfasser: Leung, Shing-Chi, Nomoto, Ken'ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent observations of Type Ia supernovae (SNe Ia) have shown diversified properties of the explosion strength, light curves, and chemical composition. To investigate possible origins of such diversities in SNe Ia, we have presented multidimensional hydrodynamical studies of explosions and associated nucleosynthesis in near-Chandrasekhar-mass carbon-oxygen (CO) white dwarfs (WDs) for a wide range of parameters. In the present paper, we extend our wide parameter survey of models to the explosions of sub-Chandrasekhar-mass CO WDs. We take the double-detonation model for the explosion mechanism. The model parameters of the survey include a metallicity of Z = 0-5 Z , a CO WD mass of M = 0.90-1.20 M , and a He envelope mass of MHe = 0.05-0.20 M . We also study how the initial He detonation configuration, such as spherical, bubble, and ring shapes, triggers the C detonation. For these parameters, we derive the minimum He envelope mass necessary to trigger the C detonation. We then examine how the explosion dynamics and associated nucleosynthesis depend on these parameters, and we compare our results with the previous representative models. We compare our nucleosynthesis yields with the unusual abundance patterns of Fe-peak elements and isotopes observed in SNe Ia SN 2011fe, SN 2012cg, and SN 2014J, as well as SN Ia remnant 3C 397, to provide constraints on their progenitors and environments. We provide the nucleosynthesis yields table of the sub-Chandrasekhar-mass explosions, to discuss their roles in the galactic chemical evolution and archaeology.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab5c1f