Effects of LESA in Three-dimensional Supernova Simulations with Multidimensional and Ray-by-ray-plus Neutrino Transport

A set of eight self-consistent, time-dependent supernova (SN) simulations in three spatial dimensions (3D) for 9 and 20 M progenitors is evaluated for the presence of dipolar asymmetries of the electron lepton-number emission as discovered by Tamborra et al. and termed lepton-number emission self-su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-08, Vol.881 (1), p.36
Hauptverfasser: Glas, Robert, Janka, H.-Thomas, Melson, Tobias, Stockinger, Georg, Just, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A set of eight self-consistent, time-dependent supernova (SN) simulations in three spatial dimensions (3D) for 9 and 20 M progenitors is evaluated for the presence of dipolar asymmetries of the electron lepton-number emission as discovered by Tamborra et al. and termed lepton-number emission self-sustained asymmetry (LESA). The simulations were performed with the Aenus-Alcar neutrino/hydrodynamics code, which treats the energy- and velocity-dependent transport of neutrinos of all flavors by a two-moment scheme with algebraic M1 closure. For each of the progenitors, results with fully multidimensional (FMD) neutrino transport and with ray-by-ray-plus (RbR+) approximation are considered for two different grid resolutions. While the 9 M models develop explosions, the 20 M progenitor does not explode with the employed version of simplified neutrino opacities. In all 3D models we observe the growth of substantial dipole amplitudes of the lepton-number (electron neutrino minus antineutrino) flux with stable or slowly time-evolving direction and overall properties fully consistent with the LESA phenomenon. Models with RbR+ transport develop LESA dipoles somewhat faster and with temporarily higher amplitudes, but the FMD calculations exhibit cleaner hemispheric asymmetries with a far more dominant dipole. In contrast, the RbR+ results display much wider multipole spectra of the neutrino emission anisotropies with significant power also in the quadrupole and higher-order modes. Our results disprove speculations that LESA is a numerical artifact of RbR+ transport. We also discuss LESA as a consequence of a dipolar convection flow inside of the nascent neutron star and establish, tentatively, a connection to Chandrasekhar's linear theory of thermal instability in spherical shells.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab275c