AGILE Study of the Gamma-Ray Emission from the SNR G78.2+2.1 (Gamma Cygni)

We present a study of the γ-ray emission detected by the Astrorivelatore Gamma ad Immagini LEggero-Gamma Ray Imaging Detector (AGILE-GRID) from the region of the SNR G78.2+2.1 (Gamma Cygni). In order to investigate the possible presence of γ rays associated with the SNR below 1 GeV, it is necessary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-06, Vol.878 (1), p.54
Hauptverfasser: Piano, G., Cardillo, M., Pilia, M., Trois, A., Giuliani, A., Bulgarelli, A., Parmiggiani, N., Tavani, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a study of the γ-ray emission detected by the Astrorivelatore Gamma ad Immagini LEggero-Gamma Ray Imaging Detector (AGILE-GRID) from the region of the SNR G78.2+2.1 (Gamma Cygni). In order to investigate the possible presence of γ rays associated with the SNR below 1 GeV, it is necessary to analyze the γ-ray radiation underlying the strong emission from the pulsar PSR J2021+4026, which totally dominates the field. An "off-pulse" analysis has been carried out, by considering only the emission related to the pulsar off-pulse phase of the AGILE-GRID light curve. We found that the resulting off-pulsed emission in the region of the SNR-detected by the AGILE-GRID above 400 MeV-partially overlaps the radio shell boundary. By analyzing the averaged emission on the whole angular extent of the SNR, we found that a lepton-dominated double-population scenario can account for the radio and γ-ray emission from the source. In particular, the MeV-GeV averaged emission can be explained mostly by Bremsstrahlung processes in a high density medium, whereas the GeV-TeV radiation can be explained by both Bremsstrahlung (Eγ 250 GeV) and inverse Compton processes (Eγ 250 GeV) in a lower density medium.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab1f69