Nonthermal Cosmic Rays during Big Bang Nucleosynthesis to Solve the Lithium Problem

The discrepancy between the theoretical prediction of primordial lithium abundances and astronomical observations is called the Lithium Problem. We assume that during Big Bang Nucleosynthesis (BBN), nucleons can gain energy and deviate from thermal equilibrium, namely BBN cosmic rays (BBNCRs). BBNCR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-03, Vol.873 (1), p.68
Hauptverfasser: Kang, Ming-Ming, Hu, Yang, Hu, Hong-Bo, Zhu, Shou-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discrepancy between the theoretical prediction of primordial lithium abundances and astronomical observations is called the Lithium Problem. We assume that during Big Bang Nucleosynthesis (BBN), nucleons can gain energy and deviate from thermal equilibrium, namely BBN cosmic rays (BBNCRs). BBNCR primary spectra are uncertain and the Coulomb energy-loss processes are neglected; however, we suppose a steady state of BBNCR spectra referring to the Galactic cosmic ray spectra observed today, to see constraints on BBNCRs, for example, the amount and energy range, not sticking to the explicit shape of the spectra. Such extra contributions from BBNCRs can explain the discrepancy, for both Li-7 and Li-6, and will change the deuterium abundance by only a little. The allowed parameter space of such an amount of nonthermal particles and the energy range are shown. The hypothesis is stable regardless of the cross-section uncertainty of relevant reactions and the explicit shape of the energy spectrum.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab0178