The Initial Mass Function of the First Stars Inferred from Extremely Metal-poor Stars

We compare the elemental abundance patterns of ∼200 extremely metal-poor (EMP; [Fe/H] < −3) stars to the supernova yields of metal-free stars, in order to obtain insights into the characteristic masses of the first (Population III or Pop III) stars in the universe. The supernova yields are prepar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-04, Vol.857 (1), p.46
Hauptverfasser: Ishigaki, Miho N., Tominaga, Nozomu, Kobayashi, Chiaki, Nomoto, Ken'ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compare the elemental abundance patterns of ∼200 extremely metal-poor (EMP; [Fe/H] < −3) stars to the supernova yields of metal-free stars, in order to obtain insights into the characteristic masses of the first (Population III or Pop III) stars in the universe. The supernova yields are prepared with nucleosynthesis calculations of metal-free stars with various initial masses (M = 13, 15, 25, 40 and 100 M ) and explosion energies (E51 = E/1051[erg] = 0.5-60), to include low-energy, normal-energy, and high-energy explosions. We adopt the mixing-fallback model, to take into account possible asymmetry in the supernova explosions, and the yields that best fit the observed abundance patterns of the EMP stars are searched by varying the model parameters. We find that the abundance patterns of the EMP stars are predominantly best-fitted by the supernova yields with initial masses M < 40 M , and that more than than half of the stars are best-fitted by the M = 25 M hypernova (E51 = 10) models. The results also indicate that the majority of the primordial supernovae have ejected 10−2-10−1 M of 56Ni, leaving behind a compact remnant (either a neutron star or a black hole), with a mass in the range of ∼1.5-5 M . These results suggest that the masses of the first stars responsible for the first metal enrichment are predominantly
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aab3de