A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time
We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties-including halo mass, stellar mass, star formation rate, gas mass, and metallicity-to make predictions for the galactic evolution of...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-02, Vol.854 (1), p.36 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties-including halo mass, stellar mass, star formation rate, gas mass, and metallicity-to make predictions for the galactic evolution of dust mass and dust temperature in main-sequence galaxies. Our simple analytic model, which predicts that galaxies in the early universe had greater quantities of dust than their low-redshift counterparts, does a good job of reproducing observed trends between galaxy dust and stellar mass out to z 6. We find that for fixed galaxy stellar mass, the dust temperature increases from z = 0 to z = 6. Our model forecasts a population of low-mass, high-redshift galaxies with interstellar dust as hot as, or hotter than, their more massive counterparts; but this prediction needs to be constrained by observations. Finally, we make predictions for observing 1.1 mm flux density arising from interstellar dust emission with the Atacama Large Millimeter Array. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aaa3f0 |