A Physically Motivated and Empirically Calibrated Method to Measure the Effective Temperature, Metallicity, and Ti Abundance of M Dwarfs
The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications, including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hi...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-12, Vol.851 (1), p.26 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications, including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analyses of M dwarf stars. Empirically calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R ∼ 25,000), Y-band (∼1 m) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe i and Ti i lines and a temperature-sensitive index based on the FeH band head. We used abundances measured from widely separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in Teff, [Fe/H], and [Ti/Fe] of 60 K, 0.1 dex, and 0.05 dex, respectively, and is calibrated for 3200 K < Teff < 4100 K, −0.7 < [Fe/H] < +0.3, and −0.05 < [Ti/Fe] < +0.3. This work is a step toward detailed chemical analysis of M dwarfs at a precision similar to what has been achieved for FGK stars. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aa96aa |