Mrk 71/NGC 2366: The Nearest Green Pea Analog
We present the remarkable discovery that the dwarf irregular galaxy NGC 2366 is an excellent analog of the Green Pea (GP) galaxies, which are characterized by extremely high ionization parameters. The similarities are driven predominantly by the giant H ii region Markarian 71 (Mrk 71). We compare th...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-08, Vol.845 (2), p.165 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the remarkable discovery that the dwarf irregular galaxy NGC 2366 is an excellent analog of the Green Pea (GP) galaxies, which are characterized by extremely high ionization parameters. The similarities are driven predominantly by the giant H ii region Markarian 71 (Mrk 71). We compare the system with GPs in terms of morphology, excitation properties, specific star-formation rate, kinematics, absorption of low-ionization species, reddening, and chemical abundance, and find consistencies throughout. Since extreme GPs are associated with both candidate and confirmed Lyman continuum (LyC) emitters, Mrk 71/NGC 2366 is thus also a good candidate for LyC escape. The spatially resolved data for this object show a superbubble blowout generated by mechanical feedback from one of its two super star clusters (SSCs), Knot B, while the extreme ionization properties are driven by the 1 Myr-old, enshrouded SSC Knot A, which has ∼10 times higher ionizing luminosity. Very massive stars (>100 M ) may be present in this remarkable object. Ionization-parameter mapping indicates that the blowout region is optically thin in the LyC, and the general properties also suggest LyC escape in the line of sight. Mrk 71/NGC 2366 does differ from GPs in that it is one to two orders of magnitude less luminous. The presence of this faint GP analog and candidate LyC emitter (LCE) so close to us suggests that LCEs may be numerous and commonplace, and therefore could significantly contribute to the cosmic ionizing budget. Mrk 71/NGC 2366 offers an unprecedentedly detailed look at the viscera of a candidate LCE, and could clarify the mechanisms of LyC escape. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aa830b |