Searching for Hypercompact Star Clusters in the Milky Way Using LAMOST and Gaia

During the early merger of the Milky Way, intermediate-mass black holes (BHs) in merged dwarf galaxies may have been ejected from the center of their host galaxies due to gravitational waves, carrying some central stars along. This process can lead to the formation of hypercompact star clusters, pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2024-06, Vol.167 (6), p.277
Hauptverfasser: Wu, Hao, Yuan, Haibo, Wang, Yilun, Niu, Zexi, Zhang, Huawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the early merger of the Milky Way, intermediate-mass black holes (BHs) in merged dwarf galaxies may have been ejected from the center of their host galaxies due to gravitational waves, carrying some central stars along. This process can lead to the formation of hypercompact star clusters, potentially hosting BHs in the mass range of 10 4 –10 5 solar masses. These clusters are crucial targets for identifying and investigating intermediate-mass BHs. However, no hypercompact star clusters in the Milky Way have been identified so far. In this paper, taking advantage of the high spatial resolution power of Gaia, we used data from Gaia Early Data Release (EDR) 3 and Large-Area Multi-Object Fiber Optic Spectroscopic Telescope Data Release 7, along with additional data from Pan-STARRS and the Sloan Digital Sky Survey, to conduct an initial screening of 6,138,049 sources using various parameters of Gaia EDR3. A total of 4786 sources were selected for in-depth analysis. Each of these sources was meticulously scrutinized by examining their images, spectra, and nearby celestial objects to exclude various false positives, such as contaminations, galaxies, wide binaries, or wrong matches. We finally identified one likely hypercompact star cluster candidate in the Milky Way, laying the foundation for further high-resolution imaging and spectral verification.
ISSN:0004-6256
1538-3881
DOI:10.3847/1538-3881/ad3e6b