Finding Fast Transients in Real Time Using a Novel Light-curve Analysis Algorithm

The current data acquisition rate of astronomical transient surveys and the promise for significantly higher rates in the next decade necessitate the development of novel approaches to analyze astronomical data sets and promptly detect objects of interest. The Deeper, Wider, Faster (DWF) program is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2022-02, Vol.163 (2), p.95
Hauptverfasser: Strausbaugh, Robert, Cucchiara, Antonino, Dow Jr, Michael, Webb, Sara, Zhang, Jielai, Goode, Simon, Cooke, Jeff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current data acquisition rate of astronomical transient surveys and the promise for significantly higher rates in the next decade necessitate the development of novel approaches to analyze astronomical data sets and promptly detect objects of interest. The Deeper, Wider, Faster (DWF) program is a survey focused on the identification of fast-evolving transients, such as fast radio bursts, gamma-ray bursts, and supernova shock breakouts. It employs multifrequency simultaneous coverage of the same part of the sky over several orders of magnitude. Using the Dark Energy Camera mounted on the 4 m Blanco telescope, DWF captures a 20 s g -band exposure every minute, at a typical seeing of ∼1″ and an air mass of ∼1.5. These optical data are collected simultaneously with observations conducted over the entire electromagnetic spectrum—from radio to γ -rays—as well as cosmic-ray observations. In this paper, we present a novel real-time light-curve analysis algorithm, designed to detect transients in the DWF optical data; this algorithm functions independently from, or in conjunction with, image subtraction. We present a sample of fast transients detected by our algorithm, as well as a false-positive analysis. Our algorithm is customizable and can be tuned to be sensitive to transients evolving over different timescales and flux ranges.
ISSN:0004-6256
1538-3881
DOI:10.3847/1538-3881/ac441b