The Youngest Planet to Have a Spin-Orbit Alignment Measurement AU Mic b
We report measurements of the sky-projected spin-orbit angle for AU Mic b, a Neptune-size planet orbiting a very young (similar to 20 Myr) nearby pre-main-sequence M-dwarf star, which also hosts a bright, edge-on, debris disk. The planet was recently discovered from preliminary analysis of radial-ve...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2021-10, Vol.162 (4), p.137, Article 137 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report measurements of the sky-projected spin-orbit angle for AU Mic b, a Neptune-size planet orbiting a very young (similar to 20 Myr) nearby pre-main-sequence M-dwarf star, which also hosts a bright, edge-on, debris disk. The planet was recently discovered from preliminary analysis of radial-velocity observations and confirmed to be transiting its host star from photometric data from the NASA's TESS mission. We obtained radial-velocity measurements of AU Mic over the course of two partially observable transits and one full transit of planet b from high-resolution spectroscopic observations made with the Minerva-Australis telescope array. Only a marginal detection of the Rossiter-McLaughlin effect signal was obtained from the radial velocities, in part due to AU Mic being an extremely active star and the lack of full transit coverage plus sufficient out-of-transit baseline. As such, a precise determination of the obliquity for AU Mic b is not possible in this study and we find a sky-projected spin-orbit angle of lambda=47(-54)(+26)degrees. This result is consistent with both the planet's orbit being aligned or highly misaligned with the spin axis of its host star. Our measurement independently agrees with, but is far less precise than observations carried out on other instruments around the same time that measure a low-obliquity orbit for the planet. AU Mic is the youngest exoplanetary system for which the projected spin-orbit angle has been measured, making it a key data point in the study of the formation and migration of exoplanets-particularly given that the system is also host to a bright debris disk. |
---|---|
ISSN: | 0004-6256 1538-3881 1538-3881 |
DOI: | 10.3847/1538-3881/ac1685 |