Scaling behavior of ferroelectric FET with reduction in number of domains in ferroelectric layer
With the gate-length scaling, the number of domains in FeFET is reduced to a few or a single domain. In this paper, we investigate the effect of multi-domains versus few/single-domain behavior in FeFET. The abrupt polarization switching behavior of a single-domain is obtained by modifying the Preisa...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2022-05, Vol.61 (SC), p.SC1030 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the gate-length scaling, the number of domains in FeFET is reduced to a few or a single domain. In this paper, we investigate the effect of multi-domains versus few/single-domain behavior in FeFET. The abrupt polarization switching behavior of a single-domain is obtained by modifying the Preisach model in which the difference between saturation and remnant polarization (
P
s
−
P
r
) is reduced. We show that for the same program/erase voltage, a two-times higher memory window can be achieved with single/few-domains FeFET than the multi-domain FeFET. Further, at fixed program/erase voltage, the scaling behavior shows improved variability due to increased polarization-induced vertical field with single-domain FeFET. We present an optimized device with a single-domain FeFET having a low operating voltage of ±2.4 V but with the same device performance that can be achieved for multi-domain FeFET having a higher operating voltage of ±5 V, which is highly promising for low power applications. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.35848/1347-4065/ac428a |