Single-trap phenomena stochastic switching for noise suppression in nanowire FET biosensors
With the fast-shrinking of the transistor dimensions, the low-frequency noise level considerably increases emerging as an important parameter for the design of advanced devices for information technologies. Single-trap phenomena (STP) is a promising approach for the low-frequency noise suppression t...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2021-05, Vol.60 (SB), p.SBBG03 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the fast-shrinking of the transistor dimensions, the low-frequency noise level considerably increases emerging as an important parameter for the design of advanced devices for information technologies. Single-trap phenomena (STP) is a promising approach for the low-frequency noise suppression technique in nanotransistor biosensors by considering trapping/detrapping noise as a signal. We show a noise reduction mechanism offered by STP in nanoscale devices making the analogy with stochastic resonance effect found in biological systems by considering a single trap as a bistable stochastically driven nonlinear system which transmits and amplifies the weak signals. The STP noise suppression effect is experimentally demonstrated for the fabricated liquid-gated nanosensors exploiting STP. We found the optimal conditions and parameters including optimized gate voltages to implement a stochastic switching effect for the extraction of useful signals from the background noise level. These results should be considered for the development of reliable and highly sensitive nanoscale biosensors. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.35848/1347-4065/abdc87 |