Linear response theory for a pseudo-Hermitian system-reservoir interaction
We present here an extension of the Caldeira-Leggett linear response model considering a pseudo-Hermitian -symmetric system-reservoir interaction. Our generalized Feynman-Vernon functional, derived from the -symmetric coupling, accounts for two influence channels: a velocity-dependent one, which can...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2018-03, Vol.121 (5), p.50006 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present here an extension of the Caldeira-Leggett linear response model considering a pseudo-Hermitian -symmetric system-reservoir interaction. Our generalized Feynman-Vernon functional, derived from the -symmetric coupling, accounts for two influence channels: a velocity-dependent one, which can act in reverse, providing energy to the system instead of draining it as usual, and an acceleration-dependent drain, analogue to the radiation-emission process. Therefore, an adequate choice of the Hamiltonian's parameters may allow the system to extract energy from the reservoir even at absolute zero for a period that may be much longer than the characteristic relaxation time. After this energy supply, the system is driven to a steady state whose energy is necessarily higher than the thermodynamic equilibrium energy due to the velocity-dependent pump. This heating mechanism of the system is more pronounced the more distant from the hermiticity is its coupling with the reservoir. An analytical derivation of the high-temperature master equation is provided helping us to better understand the whole scenario and to compute the associated relaxation and decoherence rates. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/121/50006 |