Transport in quasiperiodic interacting systems: From superdiffusion to subdiffusion
Using a combination of numerically exact and renormalization-group techniques we study the nonequilibrium transport of electrons in a one-dimensional interacting system subject to a quasiperiodic potential. For this purpose we calculate the growth of the mean-square displacement as well as the melti...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2017-08, Vol.119 (3), p.37003 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using a combination of numerically exact and renormalization-group techniques we study the nonequilibrium transport of electrons in a one-dimensional interacting system subject to a quasiperiodic potential. For this purpose we calculate the growth of the mean-square displacement as well as the melting of domain walls. While the system is nonintegrable for all studied parameters, there is no finite region of parameters for which we observe diffusive transport. In particular, our model shows a rich dynamical behavior crossing over from superdiffusion to subdiffusion. We discuss the implications of our results for the general problem of many-body localization, with a particular emphasis on the rare region Griffiths picture of subdiffusion. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/119/37003 |