A Green Route: From Carbon Dioxide to Silyl Substituted Carbonate Electrolytes for Lithium-Ion Batteries
The cyclic carbonates 4-(trimethylsilyl)-1,3-dioxolan-2-one, 4-(triethylsilyl)-1,3-dioxolan-2-one and 4-[2-(trimethylsilyl)ethyl]-1,3-dioxolan-2-one were synthesized via an environmentally friendly synthetic route and applied as electrolytes in lithium-ion battery half-cells. The synthesis was carri...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2015-01, Vol.162 (7), p.A1319-A1326 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cyclic carbonates 4-(trimethylsilyl)-1,3-dioxolan-2-one, 4-(triethylsilyl)-1,3-dioxolan-2-one and 4-[2-(trimethylsilyl)ethyl]-1,3-dioxolan-2-one were synthesized via an environmentally friendly synthetic route and applied as electrolytes in lithium-ion battery half-cells. The synthesis was carried out by the catalyzed conversion of CO2 with epoxides using the nontoxic catalysts FeCl2 and tetra-n-butylammonium bromide. Investigations of the LiTFSI solutions with regards to ionic conductivity, viscosity and solvent-salt interaction by NMR spectroscopy reveal a structure-property relationship. Linear sweep voltammetry measurements indicate no decomposition of the silyl carbonates within the electrochemical window of commonly used electrode materials for lithium-ion batteries. The suitability of the compounds as battery electrolytes is shown by half-cell measurements with lithium iron phosphate. The 4-(trimethylsilyl)-1,3-dioxolan-2-one solution not only exhibits the highest conductivity but also a high capacity with superior stability over more than 50 cycles. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.0821507jes |