In Situ Measurement for Diffusion-Adsorption Process of Cl− and SPS in Through-Silicon Via Using SERS Effect Produced by Cu Nanodot Arrays

In this study, we analyzed the diffusion behavior of additives, such as Cl− and bis-(3-sulfopropyl) disulfide (SPS), during the through-silicon via process with our surface-enhanced Raman spectroscopy (SERS) measurement system equipped with a model structure of a micro via. The via structure, made o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2019, Vol.166 (6), p.D212-D217
Hauptverfasser: Kunimoto, Masahiro, Yamaguchi, Futa, Yanagisawa, Masahiro, Homma, Takayuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we analyzed the diffusion behavior of additives, such as Cl− and bis-(3-sulfopropyl) disulfide (SPS), during the through-silicon via process with our surface-enhanced Raman spectroscopy (SERS) measurement system equipped with a model structure of a micro via. The via structure, made of poly(dimethyl siloxane) (PDMS), which has a transparent wall, was attached horizontally on the Cu nano-patterned substrate, an array of nanodots with 150-nm diameter and 300-nm pitch. This substrate provides the SERS effect with high uniformity and also works as one of the sidewalls of the via. The simultaneous diffusion of Cl− and SPS into the micro via on the Cu nanodot wall was observed by Raman microspectroscopy. The obtained SERS spectrum clearly indicated the diffusion of these two species. First, Cl− adsorbs on Cu, because it has a larger diffusion coefficient; SPS removes the pre-adsorbed Cl− to dominate the adsorption site of the surface a few minutes later. Pre-adsorbed SPS is sufficiently stable, and is not removed by a highly negative potential (for example, −200 mV vs. Ag/AgCl).
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0801906jes