Electrochemical Hydrogen Evolution by Cobalt (II) Porphyrins: Effects of Ligand Modification on Catalytic Activity, Efficiency and Overpotential

Electrochemical H2 evolution of a series of cobalt(II) porphyrins with electron-withdrawing (EW) and electron-donating (ED) substituents at the para positions of the meso-phenyl rings has been investigated in DMSO using acetic acid as a proton source. Our study showed that the nature of substituents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2018-01, Vol.165 (9), p.H481-H487
Hauptverfasser: Beyene, Belete B., Mane, Sandeep B., Hung, Chen-Hsiung
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical H2 evolution of a series of cobalt(II) porphyrins with electron-withdrawing (EW) and electron-donating (ED) substituents at the para positions of the meso-phenyl rings has been investigated in DMSO using acetic acid as a proton source. Our study showed that the nature of substituents significantly influences catalytic activity, efficiency, and the potential at which catalysis occurs. Faradaic efficiencies (FE) ranging from 44 to 99%, turnover numbers (TONs) from 1.5 to 104 (∼11 h electrolysis), turnover frequencies (TOFs) from 0.23 to 9.1 h−1, and onset overpotentials from 25 to 445 mV were obtained by tuning the porphyrinic substituents. Cobalt porphyrins with -SO3H, -COOH, or -NH2 groups as the substituents showed high activity and efficiency with more positive onset potentials as compared to the parent [Co(TPP)]. Supports also from the low hydrogen generation activities for complexes with -COOMe, -OMe and -OH groups as the substituents suggest that the acidity of the meso-phenyl substituent plays a key role in enhancing the hydrogen evolution activities during the catalytic processes.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0481809jes