Resolving Losses at the Negative Electrode in All-Vanadium Redox Flow Batteries Using Electrochemical Impedance Spectroscopy

We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance spectroscopy (EIS). The mathematics describi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2014-01, Vol.161 (6), p.A981-A988
Hauptverfasser: Sun, Che-Nan, Delnick, Frank M., Aaron, Douglas S., Papandrew, Alexander B., Mench, Matthew M., Zawodzinski, Thomas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance spectroscopy (EIS). The mathematics describing the complex impedance of the V+2/V+3 redox reaction is derived and matches the experimental data. The voltage losses contributed by each process have been resolved and quantified at various flow rates and electrode thicknesses as a function of current density during anodic and cathodic polarization. The diffusion overvoltage was affected strongly by flow rate while the charge transfer and ohmic losses were invariant. On the other hand, adopting a thicker electrode significantly changed both the charge transfer and diffusion losses due to increased surface area. Furthermore, the Tafel plot obtained from the impedance resolved charge transfer overvoltage yielded the geometric exchange current density, anodic and cathodic Tafel slopes (135 ± 5 and 121 ± 5 mV/decade respectively) and corresponding transfer coefficients α = 0.45 ± 0.02 and β = 0.50 ± 0.02 in an operating cell.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.045406jes