All Solid-State Lithium-Sulfur Battery Using a Glass-Type P2S5-Li2S Electrolyte: Benefits on Anode Kinetics
Lithium-sulfur (Li-S) batteries are promising candidates for next generation electrical energy storage devices due to their high specific energy. Despite intense research, there are still a number of technical challenges in developing a high performance Li-S battery. To elucidate the issues, an all...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2015-01, Vol.162 (4), p.A646-A651 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium-sulfur (Li-S) batteries are promising candidates for next generation electrical energy storage devices due to their high specific energy. Despite intense research, there are still a number of technical challenges in developing a high performance Li-S battery. To elucidate the issues, an all solid-state Li-S battery was fabricated using Li3PS4 solid electrolyte. Most of the theoretical capacity of sulfur, 1600 mAhg−1 was attained in the initial discharge-charge cycles with a high coulombic efficiency approaching 99%. To verify the benefit of the solid state electrolyte, galvanostatic stripping-deposition tests were also carried out on a symmetrical Li/Li cell and compared with those of a liquid electrolyte (1 M- lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) in a mixture of 1,3-dioxolane (DOL)-diethoxyethane (DEE)). The kinetics and thermodynamics of the solid-state cell are discussed from the viewpoint of the charge transfer processes. This study demonstrates both the merits and drawbacks of using the solid sulfide electrolyte in a Li-S battery and facilitates the further improvement of this important high energy storage device. |
---|---|
ISSN: | 0013-4651 |
DOI: | 10.1149/2.0441504jes |