The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries
Solvent plays a major role in determining the nature of discharge products and the extent of rechargeability of the nonaqueous lithium-air (oxygen) battery. Here we investigate chemical stability for a number of aprotic solvents against superoxide, including N,N-dialkyl amides, aliphatic and aromati...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2013-01, Vol.160 (1), p.A160-A171 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solvent plays a major role in determining the nature of discharge products and the extent of rechargeability of the nonaqueous lithium-air (oxygen) battery. Here we investigate chemical stability for a number of aprotic solvents against superoxide, including N,N-dialkyl amides, aliphatic and aromatic nitriles, oxygenated phosphorus (V) compounds, substituted 2-oxazolidinones, and fluorinated ethers. The free energy barriers for nucleophilic attack by superoxide and the C-H acidity constants in dimethyl sulfoxide are reported, which provide a theoretical framework for computational screening of stable solvents for Li-air batteries. Theoretical results are complemented by cyclic voltammetry to study the electrochemical reversibility of the O2/O2− couple containing tetrabutylammonium salt and GCMS measurements to monitor solvent stability in the presence of KO2 and a Li salt. Excellent agreement among all quantum chemical, electrochemical, and chemical methods has been obtained in evaluating solvent stability against superoxide. The combined theoretical and experimental methodology provides a comprehensive testing ground to identify electrolyte solvents stable in the air cathode. Based upon this knowledge we report on the use of an amide-based electrolyte for rechargeable oxygen electrodes in Li-O2 secondary cells. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.027302jes |