ORR on Simple Manganese Oxides: Molecular-Level Factors Determining Reaction Mechanisms and Electrocatalytic Activity

In this study we combine experimental rotating ring disc electrode data, theory, molecular-level modeling and microkinetic simulations in order to gain a deeper insight into the oxygen reduction reaction (ORR) mechanism on simple manganese oxides in alkaline media. We demonstrate that "thermody...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2018, Vol.165 (15), p.J3199-J3208
Hauptverfasser: Nikitina, Victoria A., Kurilovich, Aleksandr A., Bonnefont, Antoine, Ryabova, Anna S., Nazmutdinov, Renat R., Savinova, Elena R., Tsirlina, Galina A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study we combine experimental rotating ring disc electrode data, theory, molecular-level modeling and microkinetic simulations in order to gain a deeper insight into the oxygen reduction reaction (ORR) mechanism on simple manganese oxides in alkaline media. We demonstrate that "thermodynamic" approach based on periodical density functional theory calculations is unable to explain the experimentally observed differences in the ORR kinetics on the most (α-Mn2O3) and the least (α-MnOOH) active oxide. We perform quantum mechanical cluster calculations and show that faster kinetics of the hydrogen peroxide reduction on the surface of Mn2O3 oxide and the ensuing lower peroxide yield during the ORR are corroborated by the lower barrier for the dissociation of hydrogen peroxide adsorbed on the surface of Mn2O3 arising from adsorbate-adsorbate interactions. We provide the arguments in favor of the outersphere nature of initial O2 reduction steps and demonstrate that this hypothesis does not contradict the experimental trends observed for ORR and hydrogen peroxide reduction reactions on Mn2O3 and MnOOH.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0261815jes