Dissociation Rates of Weak Acids Using Sinusoidal Hydrodynamic Modulated Rotating Disk Electrode Employing Koutecky-Levich Equation
The hydrogen evolution reaction of HCOOH, CH3COOH, and C2H5COOH solutions consists of two different reduction processes depending on the evaluated potential region; (1) independent reduction of RCOOH and (2) simultaneous reduction of RCOOH and H2O. The reduction of each carboxylic acid generates an...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2014-01, Vol.161 (12), p.H770-H779 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hydrogen evolution reaction of HCOOH, CH3COOH, and C2H5COOH solutions consists of two different reduction processes depending on the evaluated potential region; (1) independent reduction of RCOOH and (2) simultaneous reduction of RCOOH and H2O. The reduction of each carboxylic acid generates an apparent convective diffusion-controlled limiting current. The first achievement of the present study is that by using a rotating disk electrode (RDE) and a sinusoidal hydrodynamic modulated-rotating disk electrode (SHM), it was elucidated that the additive property of the reduction currents of RCOOH and H2O was not effective, and the convective-diffusion current was successfully distinguished from the total current. The second achievement is the successful analysis of the rotation-speed dependency of the limiting current in RDE and SHM using a modified theory of the Koutecky-Levich equation. The slopes of the plots for each carboxylic acid increased in the following sequence: RDE, SHM (p = 0.05), and SHM (p = 0.24), which is consistent with the theory. The dissociation rates of the carboxylic acids and the reverse recombination rate were calculated. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.0221412jes |